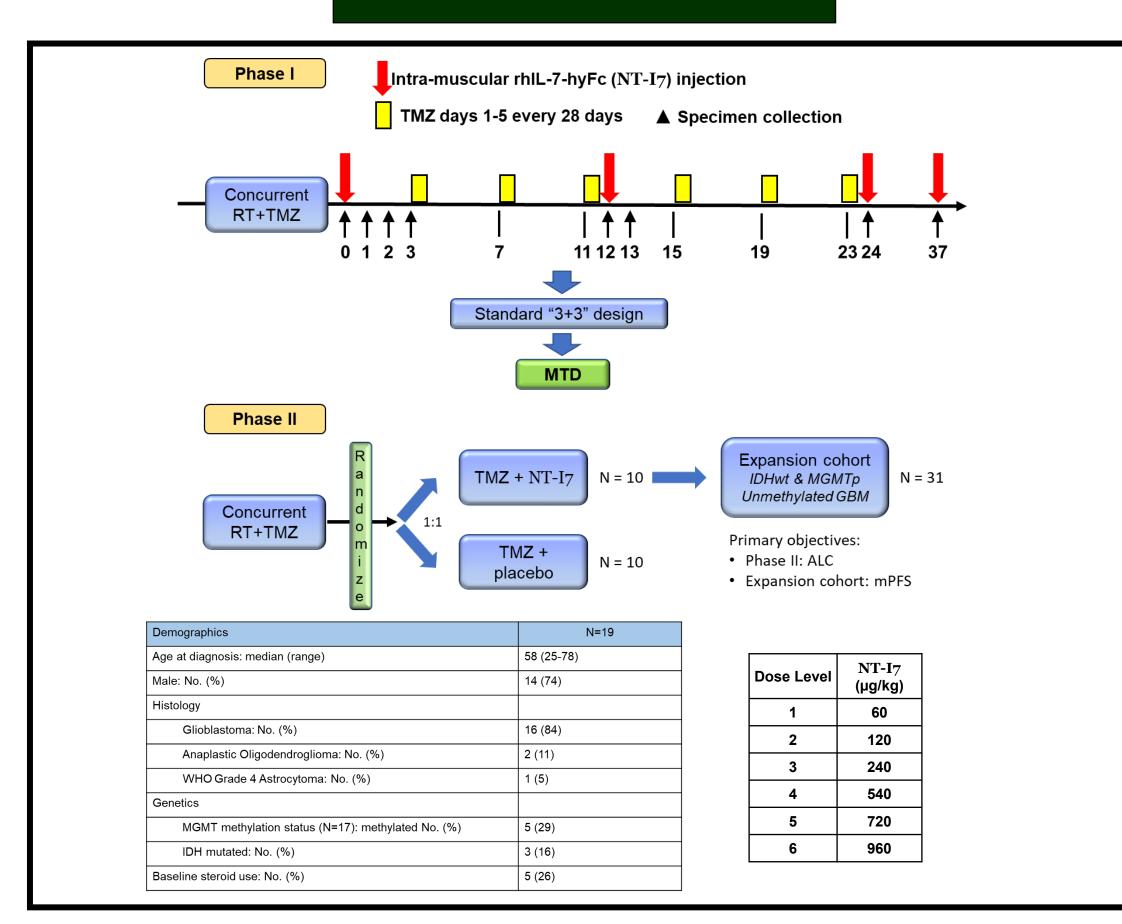


A phase I/II study evaluating the safety and efficacy of a novel long-acting interleukin-7, NT-I₇, for patients with newly diagnosed high-grade gliomas after chemoradiotherapy

Omar H. Butt¹, Yu Tao¹, Jiayi Huang¹, Jingqin Luo¹, Alice Y. Zhou¹, Christopher Abraham¹, Ruth G.N. Katumba¹, Se Hwan Yang², Byung Ha Lee², Michael Rettig¹, George Ansstas¹, Tanner Johanns¹, Milan G. Chheda¹, Jian L. Campian^{1,3}

¹Washington University, St Louis, MO; ²NeolmmuneTech, Inc., Rockville, MD; ³Mayo Clinic, Rochester, MN


Background

Lymphopenia is common after chemoradiation for high-grade gliomas (HGG) and is associated with reduced survival¹. Interleukin-7 (IL-7) promotes T-cell maturation and proliferation and is inappropriately low in lymphopenic patients with HGG². We previously demonstrated that first-in-class long-acting IL-7, NT-I₇ (efineptakin alfa), reverses lymphopenia, increase CD8 T cells in the tumor microenvironment, and improves survival in murine glioma models³. We have developed a phase I/II study evaluating the safety and efficacy of NT-I₇ in patients with HGG. This study here reports the phase I portion of the study.

Methods

Enrolled patients who had newly diagnosed HGG were treated with concurrent radiotherapy (RT) and temozolomide (TMZ) plus adjuvant TMZ every 4 weeks. NT-I7 was administered intramuscularly within 1 week after completion of RT/TMZ and then every 12 weeks, for up to 4 total doses. Phase I utilized the 3+3 design (including an accelerated phase with n=1 for the first 2 doses) to identify the maximum tolerated dose (MTD). Phase II is a double-blinded, placebo-controlled study with 10 patients in each arm. Phase I is completed with 19 patients and results are shown here.

Study Design and Enrollment

Results

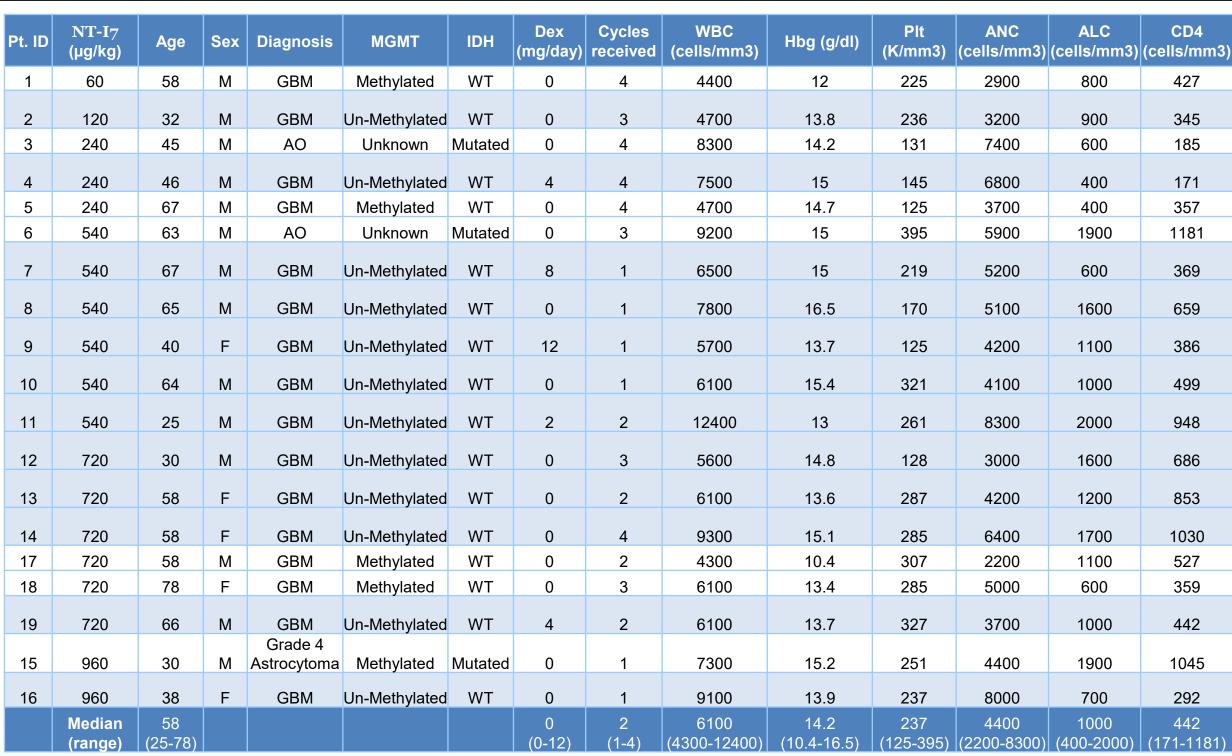


Table 1. Patient Characteristics.

n (%)	60 μg/kg (n=1)		120 μg/kg (n=1)		240 μg/kg (n=3)		540 μg/kg (n=6)		720 μg/kg (n=6)		960 μg/kg (n=2)	
	Any grade	≥Grade 3	Any grade	≥Grade 3	Any grade	≥Grade 3	Any grade	≥Grade 3	Any grade	≥Grade 3	Any grade	≥Grade 3
Injection site reaction	1 (100)	0	1 (100)	0	1 (33)	0	2 (33)	0	1 (17)	0	2 (100)	0
Pyrexia	0 (0)	0	0	0	0	0	1 (17)	0	0	0	1 (50)	0
Flu like symptoms	0	0	0	0	0	0	2 (33)	0	2 (33)	0	1 (50)	0
Rash	1 (100)	0	0	0	0	0	0	0	0	0	2 (100)	0
Fatigue	0	0	0	0	1 (33)	0	1 (17)	0	0	0	2 (100)	0
ALT increased	0	0	0	0	0	0	2 (33)	0	0	0	1 (50)	*1 (50)
AST increased	0	0	0	0	0	0	2 (33)	0	0	0	0	0
Nausea	0	0	1 (100)	0	0	0	1 (17)	0	1 (17)	0	1 (50)	0
Muscle weakness	0	0	0	0	0	0	1 (17)	1 (17)	2 (33)	0	1 (50)	0
Pain	0	0	0	0	0	0	0	0	0	0	0	* 1 (50)

Table 2. Summary of Treatment Related Adverse Events.

* 2 DLTs were seen at 960 µg/kg dose level.

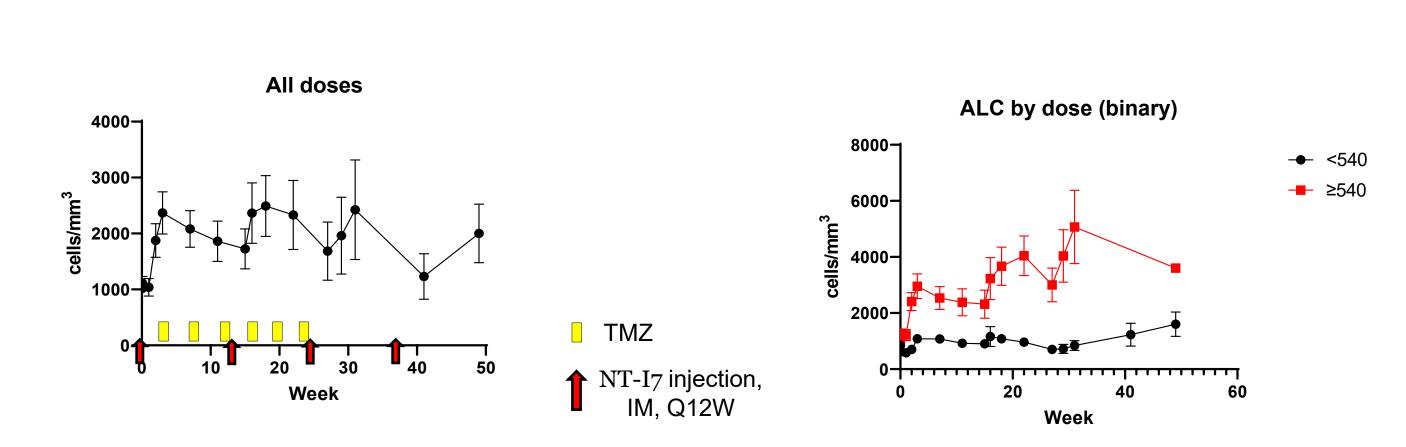
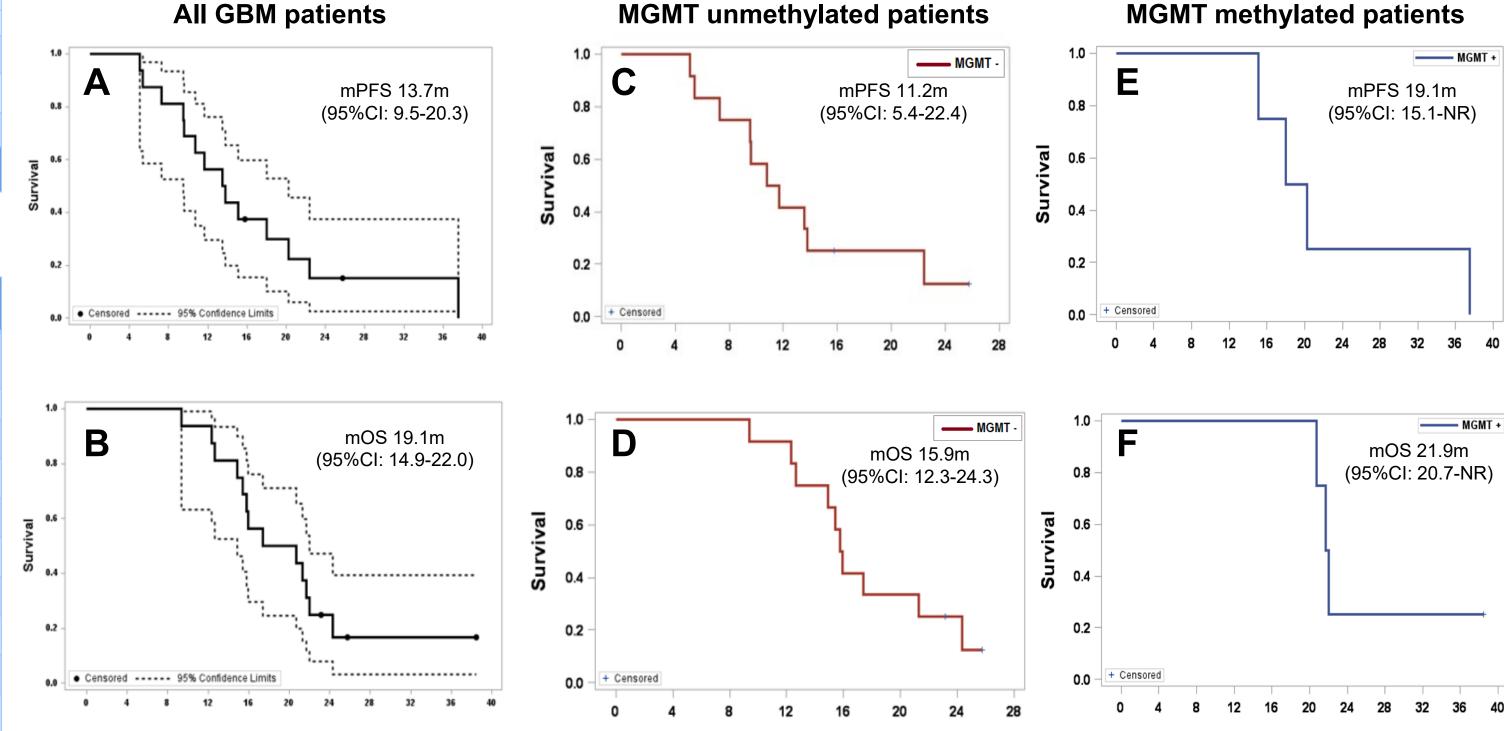



Figure 1. NT-I7 treatment increases peripheral absolute lymphocyte counts (ALC).

Figure 2. Progression Free Survival (PFS) and Overall Survival (OS) in patients with GBM. A) mPFS in all patients, n=16; B) mOS in all patients, n=16; C) mPFS in MGMT unmethylated patients, n=12; D) mOS in MGMT unmethylated patients, n=12; E) mPFS in MGMT methylated patients, n=4; F) mOS in MGMT methylated patients, n=4. Median follow-up is 25.7 months. Data cut-off as July 15th, 2022.

Conclusions

- ❖NT-I7 is well tolerated in patients with high grade gliomas.
- ❖The maximum tolerated dose (MTD) was determined at 720 µg/kg.
- While elevation of ALC was observed at doses below 540 μg/kg, the increase in ALC was substantially higher at doses 540 μg/kg and above
- ❖Although NT-I₇ showed promising PFS and OS, especially in MGMT promoter unmethylated GBM, the clinical benefit of NT-I₇ in GBM remains to be determined in future Phase 2/3 clinical trials.
- ❖Phase II and expansion cohort enrollment and immune profiling correlates are ongoing.

References

- Mendez et al. Association between treatment-related lymphopenia and overall survival in elderly patients with newly diagnosed glioblastoma. J. Neurooncol. 2016.
- Campian et al. Pre-radiation lymphocyte harvesting and post-radiation reinfusion in patients with newly diagnosed high grade gliomas. J. Neuro-Oncology 2015.
- Campian et al. Long-acting recombinant human interleukin-7, NT-I7, increases cytotoxic CD8+ T cells and enhances survival in mouse glioma models. Clin Cancer Res 2022.

Contact

Jian L. Campian MD. PhD campian.jian@mayo.edu

For questions regarding NT-I7, please contact science@neoimmunetech.com